
Public

SMART CONTRACT AUDIT REPORT

for

NewBitcoinCity

Prepared By: Xiaomi Huang

PeckShield
October 20, 2023

1/20 PeckShield Audit Report #: 2023-246

contact@peckshield.com

Public

Document Properties

Client NewBitcoinCity
Title Smart Contract Audit Report
Target NewBitcoinCity
Version 1.0
Author Xuxian Jiang
Auditors Colin Zhong, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 October 20, 2023 Xuxian Jiang Final Release
1.0-rc October 19, 2023 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/20 PeckShield Audit Report #: 2023-246

Public

Contents

1 Introduction 4
1.1 About NewBitcoinCity . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Revisited Price Calculation in AlphaKeysToken . 11
3.2 Incorrect Order Locking Validation in AlphaKeysFactory 12
3.3 Revisited TokenA Buy Price in threeThreeTradeBTC() 13
3.4 Improved Parameter Validations in AlphaKeysFactory 16
3.5 Trust Issue of Admin Keys . 17

4 Conclusion 19

References 20

3/20 PeckShield Audit Report #: 2023-246

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the NewBitcoinCity

protocol, we outline in the report our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About NewBitcoinCity

NewBitcoinCity (NBC) is an exclusive social app that offers an array of exceptional features. It does
not require email accounts or wallets, no initial deposits, and still provides seamless integrations with
other platforms. The unique 8-2-0 fee structure empowers creators, rewards referrers, and prioritizes
the community. The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of The NewBitcoinCity

Item Description
Name NewBitcoinCity
Type EVM Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report October 20, 2023

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit.

• https://github.com/TrustlessMarket/alpha-keys-contract.git (0247f33)

And here is the commit ID after fixes for the issues found in the audit have been checked in:

• https://github.com/TrustlessMarket/alpha-keys-contract.git (a9950fc)

4/20 PeckShield Audit Report #: 2023-246

Public

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would

5/20 PeckShield Audit Report #: 2023-246

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/20 PeckShield Audit Report #: 2023-246

Public

additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/20 PeckShield Audit Report #: 2023-246

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/20 PeckShield Audit Report #: 2023-246

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the NewBitcoinCity (NBC)

protocol. During the first phase of our audit, we study the smart contract source code and run our
in-house static code analyzer through the codebase. The purpose here is to statically identify known
coding bugs, and then manually verify (reject or confirm) issues reported by our tool. We further
manually review business logics, examine system operations, and place DeFi-related aspects under
scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 1

Medium 2

Low 2

Informational 0

Total 5

We have so far identified a list of potential issues. For each uncovered issue, we have therefore
developed test cases for reasoning, reproduction, and/or verification. After further analysis and
internal discussion, we determined a few issues of varying severities that need to be brought up and
paid more attention to, which are categorized in the above table. More information can be found in
the next subsection, and the detailed discussions of each of them are in Section 3.

9/20 PeckShield Audit Report #: 2023-246

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerability,
2 medium-severity vulnerabilities and 2 low-severity vulnerabilities.

Table 2.1: Key NewBitcoinCity Audit Findings

ID Severity Title Category Status
PVE-001 Medium Revisited Price Calculation in Al-

phaKeysToken
Business Logic Resolved

PVE-002 Low Incorrect Order Locking Validation in
AlphaKeysFactory

Business Logic Resolved

PVE-003 High Revisited TokenA Buy Price in three-
ThreeTradeBTC()

Business Logic Resolved

PVE-004 Low Improved Parameter Validations in Al-
phaKeysFactory

Coding Practices Resolved

PVE-005 Medium Trust Issue of Admin Keys Security Features Mitigated

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/20 PeckShield Audit Report #: 2023-246

Public

3 | Detailed Results

3.1 Revisited Price Calculation in AlphaKeysToken

• ID: PVE-001

• Severity: Medium

• Likelihood: Low

• Impact: Medium

• Target: AlphaKeysToken

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

The NBC protocol issues keys as ERC20-compliant tokens, ensuring that each user has their own ERC20

contracts for keys. To issue a new key on NBC, the approval from the NBC admin is required to verify
that the Twitter data and user information match. In the process of examining the issued keys, we
notice the trade price calculation should be improved.

To elaborate, we show below the related getPriceV2() routine. It has a rather straightforward
logic in pricing the share purchase. However, it should be revisited to compute sum1 as 0 when
supply<= NUMBER_UNIT_PER_ONE_ETHER (line 172). Note the same adjustment should be made for sum2

as well (line 179).
168 function getPriceV2(
169 uint256 supply ,
170 uint256 amount
171) internal pure returns (uint256) {
172 uint256 sum1 = supply == 0
173 ? 0
174 : ((supply - NUMBER_UNIT_PER_ONE_ETHER) *
175 supply *
176 (2 *
177 (supply - NUMBER_UNIT_PER_ONE_ETHER) +
178 NUMBER_UNIT_PER_ONE_ETHER)) / 6;
179 uint256 sum2 = supply == 0 && amount == 1
180 ? 0
181 : ((supply - NUMBER_UNIT_PER_ONE_ETHER + amount) *
182 (supply + amount) *

11/20 PeckShield Audit Report #: 2023-246

Public

183 (2 *
184 (supply - NUMBER_UNIT_PER_ONE_ETHER + amount) +
185 NUMBER_UNIT_PER_ONE_ETHER)) / 6;
186 uint256 summation = sum2 - sum1;
187 return
188 (summation * ONE_ETHER) /
189 PRICE_KEYS_DENOMINATOR /
190 (NUMBER_UNIT_PER_ONE_ETHER *
191 NUMBER_UNIT_PER_ONE_ETHER *
192 NUMBER_UNIT_PER_ONE_ETHER);
193 }

Listing 3.1: AlphaKeysToken::getPriceV2()

Recommendation Improve the above routine by funding the extra payment back to the buyer.

Status The issue has been fixed by this commit: 375e78f and 67bc9b1.

3.2 Incorrect Order Locking Validation in AlphaKeysFactory

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: AlphaKeysFactory

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

The NBC protocol has a core AlphaKeysFactory contract for key instantiation and various types of
trades. In the process of analyzing the unique type of (3,3) friend trade, we notice the related order
validation is flawed. To elaborate, we show below the related threeThreeTrade() routine.

This type of trade works as follows: a user A initiates a friend request (3,3) to another user B by
calling the function threeThreeRequest() with inputs specifying the token amount and the maximum
price after fees. The user A can cancel the request at any time using threeThreeCancel() while the
user B has the option to (1) reject the request using threeThreeReject(), in which case the tokens
will be transferred back to the user A; or (2) accept the request via threeThreeTrade(), resulting in
the issued keys being locked for 30 days. Both options require to check the given friend request
order is locked or valid. However, it comes to our attention that the below threeThreeTrade() routine
validates with the following requirement, i.e., require(!order.locked) (line 699), which should be
revised as require(order.locked).

687 function threeThreeTrade(
688 bytes32 orderId ,
689 uint256 buyPriceAAfterFeeMax

12/20 PeckShield Audit Report #: 2023-246

https://github.com/TrustlessMarket/alpha-keys-contract/commit/375e78f
https://github.com/TrustlessMarket/alpha-keys-contract/commit/67bc9b1

Public

690) external notContract nonReentrant {
691 require(buyPriceAAfterFeeMax > 0, "AKF_BPNZ");
692 //
693 ThreeThreeTypes.Order storage order = _threeThreeOrders[orderId];
694 //
695 require(
696 order.status == ThreeThreeTypes.OrderStatus.Unfilled ,
697 "AKF_BOS"
698);
699 require (! order.locked , "AKF_BOT");
700 //
701 address tokenB = order.tokenB;
702 address ownerB = IAlphaKeysToken(tokenB).getPlayer ();
703 //
704 require(_msgSender () == ownerB , "AKF_NOB");
705 // save ownerB
706 order.ownerB = ownerB;
707 order.status = ThreeThreeTypes.OrderStatus.Filled;
708 ...
709 }

Listing 3.2: AlphaKeysFactory::threeThreeTrade()

Recommendation Improve the above routine by properly validating the friend request order.

Status The issue has been fixed by this commit: f60f8f5.

3.3 Revisited TokenA Buy Price in threeThreeTradeBTC()

• ID: PVE-003

• Severity: High

• Likelihood: High

• Impact: Medium

• Target: AlphaKeysFactory

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

As mentioned earlier, NBC supports the unique type of (3,3) friend trade. While examining the
associated trading functions, we notice a key routine makes use of a wrong price, which charges
more then intended for the buying user.

To elaborate, we show below the affected threeThreeTradeBTC() routine. It has a rather straight-
forward logic in completing the (3,3) friend request. Following the same user scenario, a user A
initiates a friend request (3,3) to another user B by specifying the token amount and the maximum
price after fees. And the user B has the option to (1) reject the request or (2) accept the request.
If the request is accepted, both should share the equal buy price. However, our analysis shows that

13/20 PeckShield Audit Report #: 2023-246

https://github.com/TrustlessMarket/alpha-keys-contract/commit/f60f8f5

Public

the user A paid buyPriceAfterFee while the user B paid buyPriceBAfterFeeMax and these two numbers
are not equal (line 877).

821 function threeThreeTradeBTC(
822 bytes32 orderId
823) external notContract nonReentrant {
824 ThreeThreeTypes.Order storage order = _threeThreeOrders[orderId];
825 //
826 require(
827 order.status == ThreeThreeTypes.OrderStatus.Unfilled ,
828 "AKF_BOS"
829);
830 require(order.locked , "AKF_ONL");
831 require(order.amount == 0, "AKF_ONR");
832 //
833 address tokenB = order.tokenB;
834 address ownerB = IAlphaKeysToken(tokenB).getPlayer ();
835 //
836 require(_msgSender () == ownerB , "AKF_NOB");
837 // save ownerB
838 order.ownerB = ownerB;
839 order.status = ThreeThreeTypes.OrderStatus.Filled;
840 //
841 address ownerA = order.ownerA;
842 address tokenA = order.tokenA;
843 uint256 buyPriceBAfterFeeMax = order.buyPriceBAfterFeeMax;
844 uint24 protocolFeeRatioA = IAlphaKeysToken(tokenA)
845 .getProtocolFeeRatio ();
846 uint24 playerFeeRatioA = IAlphaKeysToken(tokenA).getPlayerFeeRatio ();
847 uint256 amountA = NumberMath.getBuyAmountMaxWithCash(
848 protocolFeeRatioA ,
849 playerFeeRatioA ,
850 tokenA ,
851 buyPriceBAfterFeeMax
852);
853 uint24 protocolFeeRatioB = IAlphaKeysToken(tokenB)
854 .getProtocolFeeRatio ();
855 uint24 playerFeeRatioB = IAlphaKeysToken(tokenB).getPlayerFeeRatio ();
856 uint256 amountB = NumberMath.getBuyAmountMaxWithCash(
857 protocolFeeRatioB ,
858 playerFeeRatioB ,
859 tokenB ,
860 buyPriceBAfterFeeMax
861);
862 order.amountA = amountA;
863 order.amountB = amountB;
864 // AKF_BANM: buy amount not min
865 require(amountA > 0 && amountB > 0, "AKF_BANM");
866 //
867 address vault = _vault;
868 //
869 uint256 buyPriceAfterFee = _buyKeysForV2ByToken(

14/20 PeckShield Audit Report #: 2023-246

Public

870 tokenB ,
871 vault ,
872 amountB ,
873 buyPriceBAfterFeeMax ,
874 ownerA ,
875 TokenTypes.OrderType.ThreeThreeOrder
876);
877 uint256 refundAmount = buyPriceBAfterFeeMax.sub(buyPriceAfterFee);
878 if (refundAmount > 0) {
879 TransferHelper.safeTransferFrom(_btc , vault , ownerA , refundAmount);
880 }
881 //
882 _buyKeysForV2ByToken(
883 tokenA ,
884 ownerB ,
885 amountA ,
886 buyPriceBAfterFeeMax ,
887 ownerB ,
888 TokenTypes.OrderType.ThreeThreeOrder
889);
890 //
891 emit ThreeThreeTradeBTC(
892 orderId ,
893 tokenA ,
894 ownerA ,
895 tokenB ,
896 ownerB ,
897 amountA ,
898 amountB
899);
900 //
901 IAlphaKeysToken(tokenA).permitLock30D(ownerB , amountA);
902 IAlphaKeysToken(tokenB).permitLock30D(ownerA , amountB);
903 }

Listing 3.3: AlphaKeysFactory::threeThreeTradeBTC()

Recommendation Improve the above routine by making use of the correct buying price.

Status The issue has been fixed by this commit: f60f8f5.

15/20 PeckShield Audit Report #: 2023-246

https://github.com/TrustlessMarket/alpha-keys-contract/commit/f60f8f5

Public

3.4 Improved Parameter Validations in AlphaKeysFactory

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: AlphaKeysFactory

• Category: Coding Practices [5]

• CWE subcategory: CWE-1126 [1]

Description

DeFi protocols typically have a number of system-wide parameters that can be dynamically configured
on demand. The NBC protocol is no exception. Specifically, if we examine the AlphaKeysFactory

contract, it has defined a number of protocol-wide risk parameters, such as _protocolFeeRatio and
_playerFeeRatio. In the following, we show the corresponding routines that allow for their changes.

150 f unc t i on s e tP r o t o c o l F e eRa t i o (uint24 p r o t o c o l F e eRa t i o) ex te rna l onlyOwner {
151 _pro toco lFeeRat i o = p r o t o c o l F e eRa t i o ;
152 }
153
154 f unc t i on g e tP r o t o c o l F e eRa t i o () ex te rna l view re tu rn s (uint24) {
155 re tu rn _pro toco lFeeRat i o ;
156 }
157
158 f unc t i on s e tP l a y e r F e eRa t i o (uint24 p l a y e r F e eRa t i o) ex te rna l onlyOwner {
159 _playe rFeeRat i o = p l a y e r F e eRa t i o ;
160 }

Listing 3.4: AlphaKeysFactory::setProtocolFeeRatio () and AlphaKeysFactory:: setPlayerFeeRatio ()

These parameters define various aspects of the protocol operation and maintenance and need
to exercise extra care when configuring or updating them. Our analysis shows the update logic on
these parameters can be improved by applying more rigorous sanity checks. Based on the current
implementation, certain corner cases may lead to an undesirable consequence. For example, an
unlikely mis-configuration of _protocolFeeRatio may charge unreasonably high fee in the payment,
hence incurring cost to users or hurting the adoption of the protocol.

Recommendation Validate any changes regarding these system-wide parameters to ensure they
fall in an appropriate range. If necessary, also consider emitting relevant events for their changes.

Status The issue has been fixed by this commit: 5e0467d.

16/20 PeckShield Audit Report #: 2023-246

https://github.com/TrustlessMarket/alpha-keys-contract/commit/5e0467d

Public

3.5 Trust Issue of Admin Keys

• ID: PVE-005

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: AlphaKeysFactory

• Category: Security Features [4]

• CWE subcategory: CWE-287 [2]

Description

In NBC, there is a privileged administrative account, i.e., owner. The administrative account plays a
critical role in governing and regulating the protocol-wide operations. Our analysis shows that this
privileged account needs to be scrutinized. In the following, we use the AlphaKeysFactory contract
as an example and show the representative functions potentially affected by the privileges of the
administrative account.

94 function setAlphaKeysTokenImplementation(
95 address playerShareTokenImplementationArg
96) external onlyOwner {
97 _playerShareTokenImplementation = playerShareTokenImplementationArg;
98 }
99

100 function setAdmin(address admin) external onlyOwner {
101 _admin = admin;
102 }
103
104 function setBTC(address btc) external onlyOwner {
105 require(btc.isContract (), "AKF_BINC");
106 _btc = btc;
107 }
108
109 function setVault(address vault) external onlyOwner {
110 require(vault.isContract (), "AKF_VINC");
111 _vault = vault;
112 }

Listing 3.5: Example Privileged Operations in AlphaKeysFactory

We understand the need of the privileged functions for contract maintenance, but at the same
time the extra power to the administrative account may also be a counter-party risk to the protocol
users. It would be worrisome if the privileged administrative account is a plain EOA account. Note
that a multi-sig account could greatly alleviate this concern, though it is still far from perfect.
Specifically, a better approach is to eliminate the administration key concern by transferring the role
to a community-governed DAO.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changes to privileged operations may need to be mediated with necessary timelocks.

17/20 PeckShield Audit Report #: 2023-246

Public

Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status The issue has been confirmed. The team is in the process of transferring the privi-
leged account to the intended DAO-like governance contract. All code and parameter updates will
undergo a thorough review and voting process within an on-chain, community-based governance life
cycle. This ensures the intended trustless nature and high-quality distributed governance. However,
establishing this DAO setup will require some time. The plan is to initiate later, ideally when New

Bitcoin City has developed a strong and quality community. As of now, it’s only been around a
month since its inception.

18/20 PeckShield Audit Report #: 2023-246

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the NewBitcoinCity protocol, which
is an exclusive social app on Bitcoin that offers an array of exceptional features. It does not require
email accounts or wallets, no initial deposits, and provides seamless integrations with other platforms.
The unique 8-2-0 fee structure empowers creators, rewards referrers, and prioritizes the community.
The current code base is well structured and neatly organized. Those identified issues are promptly
confirmed and addressed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

19/20 PeckShield Audit Report #: 2023-246

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[6] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

20/20 PeckShield Audit Report #: 2023-246

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About NewBitcoinCity
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Revisited Price Calculation in AlphaKeysToken
	Incorrect Order Locking Validation in AlphaKeysFactory
	Revisited TokenA Buy Price in threeThreeTradeBTC()
	Improved Parameter Validations in AlphaKeysFactory
	Trust Issue of Admin Keys

	Conclusion
	References

